Embedding the texture of the neutrino mass matrix into the MaVaNs scenario

Mizue Honda and Ryo Takahashi

Graduate School of Science and Technology, Niigata University 950-2181 Niigata, Japan
E-mail: mizue@muse.sc.niigata-u.ac.jp, takahasi@muse.sc.niigata-u.ac.jp

Morimitsu Tanimoto

Department of Physics, Niigata University
950-2181 Niigata, Japan
E-mail: tanimoto@muse.sc.niigata-u.ac.jp

AbStract: We have embedded the texture of the neutrino mass matrix with three families into the MaVaNs scenario. We take the power-law potential of the acceleron field and a typical texture of active neutrinos, which is derived by the D_{4} symmetry and predicts the maximal mixing of the atmospheric neutrino and the vanishing $U_{e 3}$. The effect of couplings among the dark fermion and active neutrinos are studied by putting the current cosmological data and the terrestrial neutrino experimental data. It is found that the neutrino flavor mixings evolve as well as the neutrino masses. Especially, $U_{e 3}$ develops into the non-vanishing one and $\theta_{\text {atm }}$ deviates from the maximal mixing due to couplings among the dark fermion and active neutrinos.

Keywords: Neutrino Physics.

Contents

1. Introduction ①
2. Dark energy and three active neutrino masses 2
3. Neutrinos masses and flavor mixings 3
3.1 The case of $a=b=c=1$ (the flavor blind)
3.2 The case of $a=1, b=c=0$ (the first family coupling) \&
3.3 The case of $a=b=0, c=1$ (the third family coupling) 8
4. Evolutions of neutrino masses and w 9
5. Summary 11

1. Introduction

One of the most challenging questions in both cosmological and particle physics is the nature of the dark energy in the Universe. At the present epoch, the energy density of the Universe is dominated by a dark energy component, whose negative pressure causes the expansion of the Universe to accelerate. In order to clarify the origin of the dark energy, one has tried to understand the connection of the dark energy with particle physics.

Recently, Fardon, Nelson and Weiner []] proposed an idea of the mass varying neutrinos (MaVaNs), in which the neutrino couples to the dark energy. Gu, Wang and Zhang [2] also considered the coupling of the scalar, such as Quintessence, to the neutrinos. It should be also noted that the variable neutrino mass was considered at first in [3], and was discussed for neutrino clouds (4).

The renewed MaVaNs scenario [1] has tried to make a connection between neutrinos and the dark energy. In this scenario, an unknown scalar field which is called "acceleron" is introduced, and then, the neutrino mass becomes a dynamical field. The acceleron field sits at the instantaneous minimum of its potential, and the cosmic expansion only modulates this minimum through changes in the neutrino density. Therefore, the neutrino mass is given by the acceleron field and changes with the evolution of the Universe. The cosmological parameter w and the dark energy also evolve with the neutrino mass. Those evolutions depend on a model of the scalar potential strongly. Typical examples of the potential have been discussed by Peccei (5).

The MaVaNs scenario leads to interesting phenomenological results. The neutrino oscillations may be a probe of the dark energy [6, 7]. The baryogenesis [2, 8, (9], the cosmo MSW effect of neutrinos [10] and the solar neutrino [11, (12] have been studied in the context
of this scenario. Cosmological discussions of the scenario are also presented [13-17]. The extension to the supersymmetry have been presented in ref. 18, 19.

Now one needs to construct the realistic MaVaNs scenario with three families, which is consistent with the terrestrial neutrino experimental data [20-24]. In order to get a realistic MaVaNs scenario, we have embedded a texture of the neutrino mass matrix with three families into the MaVaNs scenario and examined neutrino masses and flavor mixings 25]. We take a typical texture, which is derived by D_{4} symmetry and predicts the maximal flavor mixing and the vanishing one in the lepton sector. The effect of couplings among the dark fermion and active neutrinos are studied by putting the current cosmological data (26] and the terrestrial neutrino experimental data [20-24. It is found that neutrino flavor mixings evolve as well as neutrino masses. Especially, $U_{e 3}$ develops into the non-vanishing one and $\theta_{\text {atm }}$ deviates from the maximal mixing due to the couplings among the dark fermion and active neutrinos.

In section 2, we present the formulation of the MaVaNs scenario with three families, and in section 3^{3}, we study evolutions of neutrino masses and flavor mixings. The section \square^{\square} devotes to the summary.

2. Dark energy and three active neutrino masses

In the MaVaNs scenario, one considers a dark energy sector consisting of an acceleron field, ϕ_{a} and a dark fermion, n. Only left-handed neutrinos are supposed to couple to the dark sector. There are two constraints on the scalar potential of the acceleron field ϕ_{a}. The first one comes from the observation of the Universe, which is that the present dark energy density is about $0.7 \rho_{c}, \rho_{c}$ being the critical density. Since the dark energy is assumed to be the sum of the energy densities of neutrinos and the scalar potential in the MaVaNs scenario,

$$
\begin{equation*}
\rho_{\text {dark }}=\rho_{\nu}+V\left(\phi_{a}\right), \tag{2.1}
\end{equation*}
$$

the first constraint turns to

$$
\begin{equation*}
\rho_{\nu}^{0}+V\left(\phi_{a}^{0}\right)=0.7 \rho_{c} \tag{2.2}
\end{equation*}
$$

where " 0 " represents a value at the present epoch, and 70% is taken for the dark energy in the Universe.

The second one comes from the fundamental assumption in this scenario, which is that $\rho_{\text {dark }}$ is stationary with respect to variations in the neutrino mass. This assumption is represented by

$$
\begin{equation*}
\frac{\partial \rho_{\nu}}{\partial \sum m_{\nu i}}+\frac{\partial V\left(\phi_{a}\left(m_{\nu i}\right)\right)}{\partial \sum m_{\nu i}}=0 . \tag{2.3}
\end{equation*}
$$

For our purpose it suffices to consider the neutrino mass as a function of the cosmic temperature T [5]. Since one can write down generally

$$
\begin{equation*}
\rho_{\nu}=T^{4} \sum_{i=1}^{3} F\left(\xi_{i}\right), \quad \xi_{i}=\frac{m_{\nu i}}{T} \tag{2.4}
\end{equation*}
$$

the stationary condition eq. (2.3) turns to

$$
\begin{equation*}
T^{4} \sum_{i=1}^{3} \frac{\partial F}{\partial \xi_{i}} \frac{\partial \xi_{i}}{\partial \phi_{a}}+\frac{\partial V\left(\phi_{a}\right)}{\partial \phi_{a}}=0 \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
F\left(\xi_{i}\right)=\frac{1}{\pi^{2}} \int_{0}^{\infty} \frac{d y y^{2} \sqrt{y^{2}+\xi_{i}^{2}}}{e^{y}+1} \tag{2.6}
\end{equation*}
$$

We can obtain the time evolution of neutrino masses from the relation of eq. (2.5).
Since the stationary condition should be also satisfied at the present epoch, the second constraint on the scalar potential is

$$
\begin{equation*}
\left.\frac{\partial V\left(\phi_{a}\right)}{\partial \phi_{a}}\right|_{\phi_{a}=\phi_{a}^{0}}=-\left.T^{4} \sum_{i=1}^{3} \frac{\partial F\left(\xi_{i}\right)}{\partial \xi_{i}} \frac{\partial \xi_{i}}{\partial \phi_{a}}\right|_{m_{\nu i}\left(\phi_{a}\right)=m_{\nu i}^{0}\left(\phi_{a}^{0}\right), T=T_{0}} \tag{2.7}
\end{equation*}
$$

where $T_{0}=1.69 \times 10^{-4} \mathrm{eV}$. It is found that the gradient of the scalar potential should be negative and very small.

One can also calculate the equation of state parameter w as follows:

$$
\begin{equation*}
w+1=\frac{4-h(T)}{3\left[1+\frac{V\left(\phi_{a}\right)}{T^{4} \sum F\left(\xi_{i}\right)}\right]} \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
h(T)=\frac{\sum \xi_{i} \frac{\partial F\left(\xi_{i}\right)}{\partial \xi_{i}}}{\sum F\left(\xi_{i}\right)} \tag{2.9}
\end{equation*}
$$

In order to calculate the evolution of neutrino masses and w, we assume the power-law potential for the scalar potential $V\left(\phi_{a}\right)$ as follows:

$$
\begin{equation*}
V\left(\phi_{a}\right)=A\left(\frac{\phi_{a}}{\phi_{a}^{0}}\right)^{k} \tag{2.10}
\end{equation*}
$$

where A and k are fixed by the condition of eqs. (2.2) and (2.7) if the magnitude of the acceleron field at present, ϕ_{a}^{0} is given. Then, we can calculate evolutions of neutrino masses and w.

3. Neutrinos masses and flavor mixings

Let us discuss the neutrino mass matrix. Suppose only left-handed neutrinos couple to the dark sector, which consists of an acceleron field, ϕ_{a} and a dark fermion, n. A lagrangian for the dark sector and the neutrino sector is given as

$$
\begin{equation*}
\mathcal{L}=\bar{\nu}_{L \alpha} m_{D}^{\alpha} n+\lambda \phi_{a} n n+\bar{\nu}_{L \alpha} M_{D}^{\alpha \beta} \nu_{R \beta}+\nu_{R \alpha}^{T} M_{R}^{\alpha \beta} C^{-1} \nu_{R \beta}+\text { h.c. }, \tag{3.1}
\end{equation*}
$$

ν_{L} and ν_{R} are the left-handed and the right-handed neutrinos, respectively. Since we consider three families of active neutrinos, mass matrices $m_{D}^{\alpha}, M_{D}^{\alpha \beta}$ and $M_{R}^{\alpha \beta}$ are 3×1,
3×3 and 3×3 matrices, respectively. Then, the neutrino mass matrix is given as the 7×7 matrix

$$
M=\left(\begin{array}{ccc}
0 & m_{D} & M_{D} \tag{3.2}\\
m_{D}^{T} & \lambda \phi_{a} & 0 \\
M_{D}^{T} & 0 & M_{R}
\end{array}\right),
$$

in the $\left(\nu_{L}, n, \nu_{R}\right)$ basis. We assume the right-handed Majorana mass scale M_{R} to be much higher than the Dirac neutrino mass scale M_{D}, and $\lambda \phi_{a}$ to be much higher than the scale of m_{D}. Then, the effective neutrino mass matrix is approximately given as

$$
\begin{equation*}
M_{\nu}=M_{D} M_{R}^{-1} M_{D}^{T}+\frac{m_{D} m_{D}^{T}}{\lambda \phi_{a}} \tag{3.3}
\end{equation*}
$$

Furthermore, we have one sterile neutrino with the mass $\lambda \phi_{a}$ and heavy three right-handed Majorana neutrinos.

The first term in the right hand side of eq. (3.3) is the ordinary neutrino seesaw mass matrix, which is denoted by \tilde{M}_{ν}, and so it depends on the flavor model of neutrinos. On the other hand, the second term originates from couplings of the left-handed neutrinos to the dark sector. The matrix m_{D} is parametrized as

$$
m_{D}=D\left(\begin{array}{l}
a \tag{3.4}\\
b \\
c
\end{array}\right)
$$

where coefficients a, b and c are introduced to indicate relative couplings to three flavors. Then, the second term is written as

$$
\frac{m_{D} m_{D}^{T}}{\lambda \phi_{a}}=\frac{D^{2}}{\lambda \phi_{a}}\left(\begin{array}{ccc}
a^{2} & a b & a c \tag{3.5}\\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right)
$$

In this paper, we assume that the ordinary neutrino seesaw mass matrix \tilde{M}_{ν} dominates the effective neutrino mass matrix M_{ν}. Therefore, the contribution from the dark sector is the next-leading term. The first term depends on the model of the neutrino mass matrix. In order to find the effect of the acceleron on neutrino masses and mixings, we take the following typical texture of neutrinos in the flavor basis of the charged lepton:

$$
\tilde{M}_{\nu}=\left(\begin{array}{ccc}
X & Y & Y \tag{3.6}\\
Y & W & U \\
Y & U & W
\end{array}\right)
$$

which leads to the neutrino flavor mixing matrix:

$$
\tilde{U}=\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \tag{3.7}\\
-\frac{1}{\sqrt{2}} s_{12} & \frac{1}{\sqrt{2}} c_{12} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} s_{12} & \frac{1}{\sqrt{2}} c_{12} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

with arbitrary three neutrino masses $\tilde{m}_{1}, \tilde{m}_{2}$ and \tilde{m}_{3}. Here, c_{12} and s_{12} denote $\cos \theta_{12}$ and $\sin \theta_{12}$, respectively. The mass matrix of eq. (3.6) was derived by the discrete symmetry D_{4} and examined phenomenologically [27. This mass matrix gives $U_{e 3}=0$ and $U_{\mu 3}=-1 / \sqrt{2}$ as seen in eq. (3.7). On the other hands, θ_{12} is an arbitrary mixing angle. Therefore, this neutrino mass matrix is attractive one because it guarantees the one maximal flavor mixing and one vanishing flavor mixing.

In this paper, we discuss the effect of couplings of the left-handed neutrinos to the dark fermion on the neutrino mass matrix with the flavor symmetry. Since the contribution of the dark fermion depends on couplings a, b, c, which denote flavor couplings, we examine typical three cases of $a=b=c=1$ (the flavor blind), $a=1, b=c=0$ (the first family coupling) and $a=b=0, c=1$ (the third family coupling). The other choices of a, b, c do not provide drastic changes of results in these three cases.

3.1 The case of $a=b=c=1$ (the flavor blind)

At first, we consider the case that couplings among the left-handed neutrinos and the dark fermion are the flavor blind. Therefore, we take $a=b=c=1$ in eq. (3.4), which leads to the effective neutrino mass matrix

$$
M_{\nu}=\left(\begin{array}{ccc}
X & Y & Y \tag{3.8}\\
Y & W & U \\
Y & U & W
\end{array}\right)+\frac{D^{2}}{\lambda \phi_{a}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) .
$$

Since the structure of the neutrino mass matrix is not changed by the dark sector as seen in eq. (3.8), the flavor mixings do not deviate from $\tilde{U}_{e 3}=0$ and $\tilde{U}_{\mu 3}=-1 / \sqrt{2}$. Assuming that the contribution of the dark sector in eq. (3.8) is small compared with the active neutrino mass matrix, we get the mass eigenvalues $m_{i}(i=1 \sim 3)$ and eigenvectors u_{i} in the first order perturbative expansion as follows:

$$
\begin{align*}
m_{i} & =\tilde{m}_{i}+M_{i i}^{\prime(1)}, \\
u_{i} & =\tilde{u}_{i}+u_{i}^{(1)}, \tag{3.9}
\end{align*}
$$

where

$$
\begin{align*}
M_{i j}^{\prime(1)} & =\frac{D^{2}}{\lambda \phi_{a}}\left(\begin{array}{lll}
\tilde{U}_{e i}^{*} & \tilde{U}_{\mu i}^{*} & \tilde{U}_{\tau i}^{*}
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
\tilde{U}_{e j} \\
\tilde{U}_{\mu j} \\
\tilde{U}_{\tau j}
\end{array}\right) \\
& =\frac{D^{2}}{\lambda \phi_{a}}\left(\tilde{U}_{e i}^{*}+\tilde{U}_{\mu i}^{*}+\tilde{U}_{\tau i}^{*}\right)\left(\tilde{U}_{e j}+\tilde{U}_{\mu j}+\tilde{U}_{\tau j}\right), \\
u_{i}^{(1)} & =C_{i 1} \tilde{u}_{1}+C_{i 2} \tilde{u}_{2}+C_{i 3} \tilde{u}_{3}, \tag{3.10}
\end{align*}
$$

with

$$
\begin{equation*}
C_{i j}=\frac{M_{i j}^{\prime(1)}}{\tilde{m}_{i}-\tilde{m}_{j}}, \quad(i \neq j), \quad C_{i i}=0 \tag{3.11}
\end{equation*}
$$

and

$$
\tilde{u}_{1}=\left(\begin{array}{c}
c_{12} \tag{3.12}\\
-\frac{s_{12}}{\sqrt{2}} \\
-\frac{s_{12}}{\sqrt{2}}
\end{array}\right), \quad \tilde{u}_{2}=\left(\begin{array}{c}
s_{12} \\
\frac{c 12}{\sqrt{2}} \\
\frac{c_{12}}{\sqrt{2}}
\end{array}\right), \quad \tilde{u}_{3}=\left(\begin{array}{c}
0 \\
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right) .
$$

Since we get

$$
M^{\prime(1)}=\frac{D^{2}}{\lambda \phi_{a}}\left(\begin{array}{ccc}
\left(c_{12}-\sqrt{2} s_{12}\right)^{2} & \left(c_{12}-\sqrt{2} s_{12}\right)\left(\sqrt{2} c_{12}+s_{12}\right) & 0 \tag{3.13}\\
\left(c_{12}-\sqrt{2} s_{12}\right)\left(\sqrt{2} c_{12}+s_{12}\right) & \left(s_{12}+\sqrt{2} c_{12}\right)^{2} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

mass eigenvalues and flavor mixings are written in the first order approximation:

$$
\begin{align*}
m_{1} & =\tilde{m}_{1}+\frac{D^{2}}{\lambda \phi_{a}}\left(c_{12}-\sqrt{2} s_{12}\right)^{2}, \\
m_{2} & =\tilde{m}_{2}+\frac{D^{2}}{\lambda \phi_{a}}\left(s_{12}+\sqrt{2} c_{12}\right)^{2}, \\
m_{3} & =\tilde{m}_{3}, \tag{3.14}\\
U_{e 2} & =s_{12}+\frac{D^{2}}{\lambda \phi_{a}} c_{12} \frac{\left(c_{12}-\sqrt{2} s_{12}\right)\left(\sqrt{2} c_{12}+s_{12}\right)}{\tilde{m}_{2}-\tilde{m}_{1}}, \\
U_{\mu 3} & =-\frac{1}{\sqrt{2}} \\
U_{e 3} & =0
\end{align*}
$$

where $U_{e 3}$ and $U_{\mu 3}$ are free from the contribution of the dark sector.
Since the parameters $\tilde{m}_{i}(i=1 \sim 3)$ and s_{12} are arbitrary, these are taken to be consistent with the experimental data in the 90% CL limit 20-22, 24:

$$
\begin{align*}
0.33 \leq \tan ^{2} \theta_{\text {sun }} \leq 0.49, & 7.7 \times 10^{-5} \leq \Delta m_{\text {sun }}^{2} \leq 8.8 \times 10^{-5} \mathrm{eV}^{2} \\
0.92 \leq \sin ^{2} 2 \theta_{\mathrm{atm}}, & 1.5 \times 10^{-3} \leq \Delta m_{\mathrm{atm}}^{2} \leq 3.4 \times 10^{-3} \mathrm{eV}^{2} \tag{3.15}
\end{align*}
$$

The bound obtained by the reactor neutrinos [23] $\theta_{\text {reactor }} \leq 12^{\circ}$ is also taken in our study.
Assuming the normal hierarchy of neutrino masses, we take the following typical neutrino masses at the present epoch:

$$
\begin{equation*}
m_{3}=0.05 \mathrm{eV}, \quad m_{2}=0.01 \mathrm{eV}, \quad m_{1}=0.0045 \mathrm{eV} . \tag{3.16}
\end{equation*}
$$

These values lead to $\Delta m_{\mathrm{atm}}^{2}=2.4 \times 10^{-3} \mathrm{eV}^{2}$ and $\Delta m_{\text {sun }}^{2}=8.0 \times 10^{-5} \mathrm{eV}^{2}$, which are consistent with the experimental values in eq. (3.15). ${ }^{1}$ On the other hand, since we expect that $U_{e 2}$ does not deviate from s_{12} so much, we take a typical value $s_{12}=0.5$, which gives the relevant value of $U_{e 2}$. By using these values, we examine the effect of the dark sector on neutrino masses and flavor mixings. Evolutions of masses and mixings depend on the

[^0]| Couplings | $\frac{D^{2}}{\lambda \phi_{a}}(\mathrm{eV})$ | $\tilde{m}_{3}(\mathrm{eV})$ | $\tilde{m}_{2}(\mathrm{eV})$ | $\tilde{m}_{1}(\mathrm{eV})$ | k | $U_{e 2}$ | $U_{\mu 2}$ | $U_{e 3}$ |
| :--- | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a=b=c=1$ | 10^{-3} | 0.05 | 0.0070 | 0.0045 | 9.47×10^{-5} | 0.59 | $-1 / \sqrt{2}$ | 0 |
| | 5×10^{-4} | 0.05 | 0.0085 | 0.0045 | 4.73×10^{-5} | 0.53 | $-1 / \sqrt{2}$ | 0 |
| | 10^{-4} | 0.05 | 0.0097 | 0.0045 | 9.47×10^{-6} | 0.51 | $-1 / \sqrt{2}$ | 0 |
| | | | | | | | | |
| $a=1$ | 10^{-3} | 0.05 | 0.0098 | 0.0037 | 3.16×10^{-5} | 0.56 | $-1 / \sqrt{2}$ | 0 |
| $b=c=0$ | 5×10^{-4} | 0.05 | 0.0099 | 0.0041 | 1.58×10^{-5} | 0.53 | $-1 / \sqrt{2}$ | 0 |
| | 10^{-4} | 0.05 | 0.0100 | 0.0044 | 3.16×10^{-6} | 0.51 | $-1 / \sqrt{2}$ | 0 |
| | | | | | | | | |
| $a=b=0$ | 10^{-3} | 0.0495 | 0.0096 | 0.0044 | 3.16×10^{-5} | 0.46 | -0.698 | 0.0006 |
| $c=1$ | 5×10^{-4} | 0.0498 | 0.0098 | 0.0044 | 1.58×10^{-5} | 0.48 | -0.703 | 0.0003 |
| | 10^{-4} | 0.0499 | 0.0099 | 0.0045 | 3.16×10^{-6} | 0.49 | -0.706 | 0.0001 |

Table 1: The summary of output parameters and predictions of mixings. The input parameters are taken as $m_{3}=0.05 \mathrm{eV}, m_{2}=0.01 \mathrm{eV}, m_{1}=0.0045 \mathrm{eV}$ and $s_{12}=0.5$
parameter of the dark sector $D^{2} / \lambda \phi_{a}^{0}$, which is unknown one. We show the numerical results for three cases of

$$
\begin{equation*}
\frac{D^{2}}{\lambda \phi_{a}^{0}}=10^{-3} \mathrm{eV}, \quad 5 \times 10^{-4} \mathrm{eV}, \quad 10^{-4} \mathrm{eV} \tag{3.17}
\end{equation*}
$$

because the effect of the dark sector is tiny in the case of $D^{2} / \lambda \phi_{a}^{0} \leq 10^{-4} \mathrm{eV}$. On the other hand, the speed of sound becomes imaginary in the case of $D^{2} / \lambda \phi_{a}^{0} \geq 10^{-3} \mathrm{eV}$, which will be discussed in the section 1 .

For each case of eq. (3.17), we solve equations in eq. (3.14) at the present epoch, and then we can get $\tilde{m}_{1}, \tilde{m}_{2}, \tilde{m}_{3}, U_{e 2}, U_{\mu 3}$ and $U_{e 3}$. The numerical results are presented in table 1. It is noticed that $m_{3}, U_{\mu 3}$ and $U_{e 3}$ are free from the effect of the dark sector, while m_{2} and $U_{e 2}$ have the seizable contribution from the dark sector, and m_{1} has the tiny one. Therefore, $\Delta m_{\mathrm{atm}}^{2}, \Delta m_{\text {sun }}^{2}$ and $U_{e 2}$ are time dependent in the universe.

On the other hand, the sterile neutrino mass is predicted for each case of eq. (3.17) as $1.0 D^{2} \mathrm{keV}, 2.0 D^{2} \mathrm{keV}$ and $10 D^{2} \mathrm{keV}$, respectively, which depends on the unknown parameter D in the eV unit.

Since we know ϕ_{a} dependence of neutrino masses, we get the parameter A and k in the scalar potential $V\left(\phi_{a}\right)$ of eq. (2.10). The conditions of eqs. (2.2) and (2.7) turn to be

$$
\begin{align*}
A & =0.7 \rho_{c}-\rho_{\nu}^{0}=2.79 \times 10^{-11} \mathrm{eV}^{4}, \\
k & =\left.T^{3} \sum_{i=1}^{3} \frac{\partial F\left(\xi_{i}\right)}{\partial \xi_{i}}\right|_{m_{\nu i}\left(\phi_{a}\right)=m_{\nu i}^{0}\left(\phi_{a}^{0}\right), T=T^{0}} \times \frac{D^{2}}{A \lambda \phi_{a}^{0}}\left[\left(c_{12}-\sqrt{2} s_{12}\right)^{2}+\left(s_{12}+\sqrt{2} c_{12}\right)^{2}\right] \\
& =3 n_{\nu}^{0} \frac{D^{2}}{A \lambda \phi_{a}^{0}}, \tag{3.18}
\end{align*}
$$

where $n_{\nu}^{0}=8.82 \times 10^{-13} \mathrm{eV}^{3}$ is taken for the neutrino number density at the present epoch . The values of k are also summarized in table 11.

3.2 The case of $a=1, b=c=0$ (the first family coupling)

Let us consider the case that flavor dependent couplings of the left-handed neutrinos to the dark fermion. The case of $a=1, b=c=0$ in eq. (3.4) leads to the effective neutrino mass matrix

$$
M_{i j}^{\prime(1)}=\frac{D^{2}}{\lambda \phi_{a}}\left(\begin{array}{ccc}
c_{12}^{2} & c_{12} s_{12} & 0 \tag{3.19}\\
c_{12} s_{12} & s_{12}^{2} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

which gives mass eigenvalues and flavor mixings in the first order approximation:

$$
\begin{align*}
m_{1} & =\tilde{m}_{1}+\frac{D^{2}}{\lambda \phi_{a}} c_{12}^{2} \\
m_{2} & =\tilde{m}_{2}+\frac{D^{2}}{\lambda \phi_{a}} s_{12}^{2} \\
m_{3} & =\tilde{m}_{3} \tag{3.20}\\
U_{e 2} & =s_{12}+\frac{D^{2}}{\lambda \phi_{a}} \frac{c_{12}^{2} s_{12}}{\tilde{m}_{2}-\tilde{m}_{1}} \\
U_{\mu 3} & =-\frac{1}{\sqrt{2}} \\
U_{e 3} & =0
\end{align*}
$$

Taking same input parameters in the case of $a=b=c=1$, we get numerical results as shown in table [1] In this case, $m_{3}, U_{\mu 3}$ and $U_{e 3}$ are free from the effect of the dark sector as well as the case of $a=b=c=1$. On the other hand, m_{1}, m_{2} and $U_{e 2}$ have the seizable contribution from the dark sector. Furthermore, we get

$$
\begin{equation*}
A=2.79 \times 10^{-11} \mathrm{eV}^{4} \tag{3.21}
\end{equation*}
$$

which is the same one in eq. (3.18), and k is summarized in table 1. .

3.3 The case of $a=b=0, c=1$ (the third family coupling)

We discuss another case of couplings. Since the case of $a=b=0, c=1$ in eq. (3.4) leads to the effective neutrino mass matrix

$$
M_{i j}^{\prime(1)}=\frac{1}{2} \frac{D^{2}}{\lambda \phi_{a}}\left(\begin{array}{ccc}
s_{12}^{2} & -c_{12} s_{12} & -s_{12} \tag{3.22}\\
-c_{12} s_{12} & c_{12}^{2} & c_{12} \\
-s_{12} & c_{12} & 1
\end{array}\right)
$$

we get mass eigenvalues and flavor mixings in the first order approximation:

$$
\begin{align*}
& m_{1}=\tilde{m}_{1}+\frac{1}{2} \frac{D^{2}}{\lambda \phi_{a}} s_{12}^{2} \\
& m_{2}=\tilde{m}_{2}+\frac{1}{2} \frac{D^{2}}{\lambda \phi_{a}} c_{12}^{2} \\
& m_{3}=\tilde{m}_{3}+\frac{1}{2} \frac{D^{2}}{\lambda \phi_{a}} \tag{3.23}
\end{align*}
$$

Figure 1: Plot of m_{2} versus the redshift z for three cases.

$$
\begin{aligned}
U_{e 2} & =s_{12}-\frac{1}{2} \frac{D^{2}}{\lambda \phi_{a}} \frac{c_{12}^{2} s_{12}}{\tilde{m}_{2}-\tilde{m}_{1}} \\
U_{\mu 3} & =-\frac{1}{\sqrt{2}}+\frac{1}{2 \sqrt{2}} \frac{D^{2}}{\lambda \phi_{a}}\left(\frac{c_{12}^{2}}{\tilde{m}_{3}-\tilde{m}_{2}}+\frac{s_{12}^{2}}{\tilde{m}_{3}-\tilde{m}_{1}}\right) \\
U_{e 3} & =\frac{1}{2} \frac{D^{2}}{\lambda \phi_{a}}\left(\frac{c_{12} s_{12}}{\tilde{m}_{3}-\tilde{m}_{2}}-\frac{c_{12} s_{12}}{\tilde{m}_{3}-\tilde{m}_{1}}\right)
\end{aligned}
$$

Taking the same input parameters in the case of $a=b=c=1$, we get numerical results as shown in table 1. In this case, $m_{3}, U_{\mu 3}$ and $U_{e 3}$ also catch the effect of the dark sector as well as m_{1}, m_{2} and $U_{e 2}$. It is remarked that the non-vanishing $U_{e 3}$ is obtained as well as the deviation from the maximal mixing of $U_{\mu 3}$. The parameter A and k are the same one in the subsection 3.2.

4. Evolutions of neutrino masses and w

If ϕ_{a}^{0} is fixed, in other words, D^{2} / λ is given, we can calculate the evolution of neutrino masses and w by using eqs. (2.5) and (2.8). In order to see these evolutions, we take $D^{2} / \lambda=1 \mathrm{eV}^{2}$ in eq. (3.17) in this section.

In the cases of $a=b=c=1$ and $a=1, b=c=0, m_{3}$ does not evolve because the dark sector does not contribute to the third family, while it does evolve a little in the case of $a=b=0, c=1$. Therefore, we show the evolution of neutrino mass m_{2} versus the redshift $z=T / T_{0}-1$ for three cases in figure 1 .

As seen in figure 1, the remarkable evolution of m_{2} is found in the region of $z=0 \sim 1$ for the case of $a=b=c=1$. Evolutions of cases of $a=1, b=c=0$ and $a=b=0, c=1$ are small compared with the one in the case of $a=b=c=1$.

Evolutions of w versus z are shown in figure 2. These behaviors of w are similar in three cases. The value of w turns to positive around $z=10$, which is somewhat different from the result by Peccei [[b] , in which the power-law potential was also taken in the one family model and then, w becomes positive near $z=20$.

It was remarked [15] that the speed of sound, c_{s} becomes imaginary at the nonrelativistic limit at the present and then the Universe cease to accelerate. However, our prediction of c_{s}^{2} is positive and around 0.1 at the present epoch if the condition

Figure 2: Plot of the equation of state parameter w versus z for three cases.
$D^{2} /\left(\lambda \phi_{a}\right) \leq 5 \times 10^{-4}$ is satisfied. It means that one needs careful study of the next-leading term at the non-relativistic limit of neutrinos.

In order to get the next-leading term at the non-relativistic limit, the function $F\left(\xi_{i}\right)$ in eq. (2.6) is expanded as

$$
\begin{equation*}
F\left(\xi_{i}\right)=\frac{\xi_{\nu i}}{\pi^{2}}\left(\int_{0}^{\infty} \frac{d y y^{2}}{e^{y}+1}+\frac{1}{2 \xi_{\nu i}^{2}} \int_{0}^{\infty} \frac{d y y^{4}}{e^{y}+1}+\cdots\right) \tag{4.1}
\end{equation*}
$$

Then, the speed of sound is given as^{2}

$$
\begin{align*}
c_{s}^{2} & =w+\frac{\dot{w}}{\dot{\rho}_{\text {dark }}} \rho_{\text {dark }} \tag{4.2}\\
& =\frac{\sum_{i=1}^{3}\left(\frac{\partial m_{\nu i}}{\partial z} \hat{n}_{\nu}\right)}{\sum_{i=1}^{3} m_{\nu i} \frac{\partial \hat{n}_{\nu}}{\partial z}}+\frac{5}{3} f \hat{n}_{\nu} \frac{\left[4 T_{0}\left(\sum_{i=1}^{3} \frac{1}{\xi_{i}}\right)-T\left(\sum_{i=1}^{3} \frac{1}{\xi_{i}^{2}} \frac{\partial \xi_{i}}{\partial z}\right)\right]}{\sum_{i=1}^{3} m_{\nu i} \frac{\partial \hat{n}_{\nu}}{\partial z}}, \tag{4.3}
\end{align*}
$$

where

$$
\begin{equation*}
\hat{n}_{\nu}=\frac{T^{3}}{\pi^{2}} \int_{0}^{\infty} \frac{d y y^{2}}{e^{y}+1}, \quad f=\frac{1}{2} \frac{\int_{0}^{\infty} \frac{d y y^{4}}{e^{y+1}+1}}{\int_{0}^{\infty} \frac{d y y^{2}}{e^{y}+1}} \simeq 6.47 \tag{4.4}
\end{equation*}
$$

In eq. (4.3), the time derivative is replaced with z derivative. The first term in the right hand side of eq. (4.3) is the leading term at the non-relativistic limit and is negative definite because of $\partial m_{\nu i} / \partial z<0$ and $\partial n_{\nu}^{(0)} / \partial z>0$. Since the numerator of the second term, which is the next-leading term, is reduced to

$$
\begin{equation*}
4 T_{0}\left(\sum_{i=1}^{3} \frac{1}{\xi_{i}}\right)-T\left(\sum_{i=1}^{3} \frac{1}{\xi_{i}^{2}} \frac{\partial \xi_{i}}{\partial z}\right)=5 T_{0}\left(\sum_{i=1}^{3} \frac{1}{\xi_{i}}\right)-\left(\sum_{i=1}^{3} \frac{1}{\xi_{i}^{2}} \frac{\partial m_{\nu i}}{\partial z}\right) \tag{4.5}
\end{equation*}
$$

the second term is positive definite. The magnitude of $\partial m_{\nu i} / \partial z$ is model dependent. In our power-law potential for $V\left(\phi_{a}\right)$, the magnitude of the first term becomes very small.

[^1]Then, the second term is non-negligible one in the case of $m_{i} \leq \mathcal{O}\left(10^{-2}\right) \mathrm{eV}$. If we take the condition $D^{2} /\left(\lambda \phi_{a}\right) \leq 5 \times 10^{-4}$, the leading term is very small and then, c_{s}^{2} becomes positive due to the second term. Actually, we checked numerically relative magnitude of each term in the right hand side in eq. (4.3). Thus, the positive c_{s}^{2} is understandable in our model.

5. Summary

We have embedded the texture of the neutrino mass matrix with three families into the MaVaNs scenario. We take a typical texture of active neutrinos, which is derived by the D_{4} symmetry and predicts the maximal mixing of the atmospheric neutrino and the vanishing $U_{e 3}$. The effect of couplings among the dark sector and active neutrinos are discussed by putting the current cosmological data and the terrestrial neutrino experimental data.

It is found that flavor mixings evolve as well as neutrino masses. Especially, $U_{e 3}$ develops into the non-vanishing one and $\theta_{\text {atm }}$ deviates from the maximal mixing due to the dark sector in the case of coupling $a=b=0, c=1$. It is also remarked that the speed of sound, c_{s}^{2} could be positive in our model.

Thus, the three family neutrino texture can be embedded into the MaVaNs scenario, where the power-law potential of the acceleron field, ϕ_{a} is taken. It is noticed that our results do not change so much even if we take the exponential potential of ϕ_{a}. The related phenomena of our flavor mixing varying scenario will be discussed elsewhere.

Acknowledgments

This work is supported by the Grant-in-Aid for Science Research, Ministry of Education, Science and Culture, Japan(No.16028205,17540243).

References

[1] R. Fardon, A.E. Nelson and N. Weiner, Astropart. Phys. 10 (2004) 005.
[2] P. Gu, X-L. Wang and X-Min. Zhang, Dark energy and neutrino mass limits from baryogenesis, Phys. Rev. D 68 (2003) 087301.
[3] M. Kawasaki, H. Murayama and T. Yanagida, Mod. Phys. Lett. A 7 (1992) 563.
[4] G.J. Stephenson, T. Goldman and B.H.J. McKellar, Neutrino clouds, Int. J. Mod. Phys. A 13 (1998) 2765; Mod. Phys. Lett. A 12 (1997) 2391.
[5] R.D. Peccei, Neutrino models of dark energy, Phys. Rev. D 71 (2005) 023527.
[6] D.B. Kaplan, A.E. Nelson, N. Weiner, Neutrino oscillations as a probe of dark energy, Phys. Rev. Lett. 93 (2004) 091801.
[7] V. Barger, D. Marfatia and K. Whisnant, Confronting mass-varying neutrinos with miniboone, hep-ph/0509163.
[8] X-J. Bi, P. Gu, X-L. Wang and X-Min. Zhang, Thermal leptogenesis in a model with mass varying neutrinos, Phys. Rev. D 69 (2004) 113007.
[9] P. Gu and X-J. Bi, Thermal leptogenesis with triplet higgs boson and mass varying neutrinos, Phys. Rev. D 70 (2004) 063511.
[10] P.Q. Hung and H. Pas, Cosmo MSW effect for mass varying neutrinos, Mod. Phys. Lett. A 20 (2005) 1209 astro-ph/0311131.
[11] V. Barger, P. Huber and D. Marfatia, Solar mass-varying neutrino oscillations, Phys. Rev. Lett. 95 (2005) 211802 hep-ph/0502196.
[12] M. Cirelli, M.C. Gonzalez-Garcia and C. Pena-Garay, Mass varying neutrinos in the sun, Nucl. Phys. B 719 (2005) 219 hep-ph/0503028.
[13] X.-J. Bi, B. Feng, H. Li and X.-m. Zhang, Cosmological evolution of interacting dark energy models with mass varying neutrinos, hep-ph/0412002.
[14] R. Horvat, Mass-varying neutrinos from a variable cosmological constant, astro-ph/0505507; R. Barbieri, L.J. Hall, S.J. Oliver and A. Strumia, Dark energy and right-handed neutrinos, Phys. Lett. B 625 (2005) 189 hep-ph/0505124.
[15] N. Afshordi, M. Zaldarriaga and K. Kohri, On the stability of dark energy with mass-varying neutrinos, Phys. Rev. D 72 (2005) 065024 [astro-ph/0506663].
[16] N. Weiner and K. Zurek, New matter effects and BBN constraints for mass varying neutrinos, hep-ph/0509201.
[17] M. Hentschinski, H. Weigert and A. Schafer, Extension of the color glass condensate approach to diffractive reactions, hep-ph/0509272.
[18] R. Takahashi and M. Tanimoto, Model of mass varying neutrinos in SUSY, hep-ph/0507142.
[19] R. Fardon, A.E. Nelson and N. Weiner, Supersymmetric theories of neutrino dark energy, hep-ph/0507235.
[20] Super-Kamiokande collaboration, S. Fukuda et al., Solar B-8 and HEP neutrino measurements from 1258 days of super-kamiokande data, Phys. Rev. Lett. 86 (2001) 5651 hep-ex/0103032;
SNO collaboration, Q.R. Ahmad et al., Measurement of the charged current interactions produced by B-8 solar neutrinos at the sudbury neutrino observatory, Phys. Rev. Lett. 87 (2001) 071301 nucl-ex/0106015; ibid. Direct evidence for neutrino flavor transformation from neutral current interactions in the sudbury neutrino observatory, Phys. Rev. Lett. 89 (2002) 011301; ibid. Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters, Phys. Rev. Lett. 89 (2002) 011302; ibid.
Measurement of the total active B-8 solar neutrino flux at the sudbury neutrino observatory with enhanced neutral current sensitivity, Phys. Rev. Lett. 92 (2004) 181301.
[21] KamLAND collaboration, T. Araki et al., Measurement of neutrino oscillation with kamland: evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 hep-ex/0406035.
[22] Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 hep-ex/9807003]; ibid. Measurement of the flux and zenith angle distribution of upward through going muons by super-Kamiokande, Phys. Rev. Lett. 82 (1999) 2644; ibid. Observation of the east-west anisotropy of the atmospheric neutrino flux, Phys. Rev. Lett. 82 (1999) 5194.
[23] CHOOZ collaboration, M. Apollonio et al., Limits on neutrino oscillations from the Chooz experiment, Phys. Lett. B 466 (1999) 415 hep-ex/9907037.
[24] G.L. Fogli et al., Solar neutrino oscillation parameters after first Kamland results, Phys. Rev. D 67 (2003) 073002 hep-ph/0212127;
J.N. Bahcall, M.C. Gonzalez-Garcia and C. Pena-Garay, Solar neutrinos before and after Kamland, JHEP 02 (2003) 009 hep-ph/0212147;
M. Maltoni, T. Schwetz and J.W.F. Valle, Combining first Kamland results with solar neutrino data, Phys. Rev. D 67 (2003) 093003 hep-ph/0212129;
V. Sauli, Minkowski solution of Dyson-Schwinger equations in momentum subtraction scheme, JHEP 02 (2003) 001 hep-ph/0209046;
V. Barger and D. Marfatia, Kamland and solar neutrino data eliminate the low solution, Phys. Lett. B 555 (2003) 144 hep-ph/0212126;
M. Maltoni, T. Schwetz, M.A. Tortola and J.W.F. Valle, Status of three-neutrino oscillations after the SNO-Salt data, Phys. Rev. D 68 (2003) 113010 hep-ph/0309130.
[25] Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870.
[26] A.G. Riess et.al., Type Ia supernova discoveries at $z_{\dot{\delta}} 1$ from the hubble space telescope: evidence for past deceleration and constraints on dark energy evolution, Astrophys. J. 607 (2004) 665 .
[27] W. Grimus and L. Lavoura, A discrete symmetry group for maximal atmospheric neutrino mixing, Phys. Lett. B 572 (2003) 189 hep-ph/0305046;
W. Grimus, A.S. Joshipura, S. Kaneko, L. Lavoura and M. Tanimoto, JHEP 0407 (204) 078.

[^0]: ${ }^{1}$ There are other choices for m_{2} and m_{1}. For example, the set of $m_{2}=0.009 \mathrm{eV}$ and $m_{1}=0.001 \mathrm{eV}$ also gives $\Delta m_{\text {sun }}^{2}=8.0 \times 10^{-5} \mathrm{eV}$. However, the numerical results in table do not so change.

[^1]: ${ }^{2}$ A paper including the detail derivation of c_{s}^{2} and its physical implication will appear soon.

